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Resting‑state blink rate does not increase 
following very‑light‑intensity exercise, 
but individual variation predicts executive 
function enhancement levels
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Abstract 

Background  Acute physical exercise, even at a very-light-intensity, potentiates prefrontal cortex activation 
and improves executive function. The underlying circuit mechanisms in the brain remain poorly understood, 
though we speculate a potential involvement of arousal-related neuromodulatory systems. Recently, our rodent 
study demonstrated that exercise, even at light-intensity, activates the midbrain dopaminergic neurons. Resting-state 
spontaneous eye blink rate is linked to brain-arousal neural circuits, and potentially to those modulated by dopamin-
ergic system. We hypothesized that neural substrates linked to resting-state eye blink rate contribute to the cognitive 
impact of acute very-light-intensity exercise.

Method  We analyzed data from a previous study with a renewed focus on resting-state eye blink rate. Twenty-four 
healthy young adults completed both 10 min of cycling (very-light-intensity exercise: 30% peak oxygen uptake) 
and rest conditions. Resting-state eye blink rate and Stroop task performance were measured before and after 
both exercise and resting control.

Results  Results showed no significant differences in eye blink rate changes between conditions. However, correla-
tion analyses revealed that exercise-induced changes in resting-state eye blink rate were significantly associated 
with individual variations in Stroop task performance enhancement.

Conclusion  Very-light-intensity exercise does not elicit a consistent increase in eye blink rate after exercise. This 
finding does not support the involvement of a blink increase-linked neural substrate in enhancing executive func-
tion through very-light-intensity exercise. However, resting-state eye blink rate that is altered by exercise is predictive 
of executive function enhancement levels; this may serve as a novel contactless biomarker for predicting exercise 
benefits for brain health and cognition.
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Background
An active lifestyle promotes brain health [1]. Acute and 
chronic exercise, even very-light-intensity exercise, can 
enhance cognitive health related to the prefrontal cor-
tex [2, 3]. The ascending arousal system play an impor-
tant role in prefrontal cortex cognitive function [4]. In 
considering neural dynamics induced by acute exercise 
for cognitive enhancement, we speculate the involve-
ment of exercise-induced activation of the ascending 
arousal system, particularly brainstem catecholamin-
ergic (dopaminergic (DA) and noradrenergic (NA)) 
neurons through our animal-to-humans translational 
research [5, 6]. However, the neurobiological mecha-
nisms are elusive and useful biomarkers for this have 
not yet been identified in humans.

Eye-based measurements are economical and non-
invasive, which is useful in exercise-cognition science 
[3, 7–9]. Brainstem arousal and DA agents modulate 
blink rate in monkeys and humans; therefore, resting-
state spontaneous eye blink rate (rssEBR) has been dis-
cussed as a biomarker linked to DA-related behavior 
[10–13]. Human positron emission tomography (PET) 
studies show that striatal DA release affects rssEBR [12, 
14, 15]. For example, rssEBR decreases in Parkinson’s 
disease, restored by a DA precursor [16]. Although a 
more precise mechanistic understanding is needed 
[17], rssEBR remains a potential biomarker for explor-
ing DA-regulated cognitive enhancement [18]. Our 
previous cross-sectional study showed that a higher 
baseline rssEBR is associated with higher aerobic fit-
ness and superior executive function, suggesting that 
rssEBR may mediate a fitness-cognition link [9]. This 
finding leads to the hypothesis that rssEBR may both 
provide mechanistic insight into and provide a reliable, 
non-invasive biomarker for the impact of exercise on 
cognition, not only for the effects of chronic exercise, 
but also for acute exercise.

We aimed to explore whether acute very-light-
intensity exercise increases rssEBR and, subsequently, 
whether increased rssEBR following exercise pre-
dicts prefrontal cognitive enhancement. Our previ-
ous research shows that very-light-intensity exercise 
improves executive function with left dorsolateral pre-
frontal cortex (l-DLPFC) activity [3]. We also showed 
that pupil dynamics, a measure of the NA-linked 
arousal system, predict, while exercising, enhanced 
executive function [3]. The current study builds on 
our previous research by analyzing additional facets of 
our previous data to examine the association between 
rssEBR and enhanced executive function.

Materials and methods
We focused on rssEBR pre- and post-exercise, analyz-
ing different facets of the data presented in Kuwamizu 
et al. [3]. Here we will briefly describe the original meth-
ods. Thirty-four healthy young adults, all native Japanese 
speakers, were recruited, of which 24 (3 females, mean 
age 21.7  years, SD = 1.2; 21 males, mean age 22.2  years, 
SD = 1.5) passed the screening (e.g., medication use, 
eye health condition, task comprehension) and par-
ticipated in both 10  min of very-light-intensity exercise 
(30% V̇O2peak

 ) on a cycle ergometer and a resting control 
condition on separate days in a crossover design (Fig. 1). 
rssEBR was measured for 3 min before and after exercise.

Resting‑state spontaneous eye blink rate
rssEBR was measured before (Pre1 before Stroop test; 
Pre2 after Stroop test but before exercise) and immedi-
ately after (Post) exercise (EX) and control (CTL) condi-
tions (Fig. 1). The focus was on resting-states before and 
after exercise to avoid the influence of body movements 
on eyelid activity, unlike other previous studies that 
focused on pupil diameter during exercise. Participants 
looked at a black fixation cross on a gray digital screen 
70  cm away. rssEBR (blinks per minute) was recorded 
for 3 min using a camcorder set above the monitor. Two 
researchers independently assessed rssEBR, and the 
average of their scores was used [9]. We previously con-
firmed the validity of this camcorder count using a verti-
cal electrooculogram recording method [9]. Correlations 
between researchers exceeded r = 0.99. Individual rssEBR 
was calculated by dividing the total number of blinks 
during the 3-min interval by 3. All data were collected by 
6:00 pm because rssEBR can be less stable at night [9, 11]. 
Participants were not informed that their blinks would be 
measured to ensure natural blinking.

Other variables
Executive function was assessed before and after exercise 
using a Stroop task (Fig. 1). Inverse efficiency scores (IES) 
were calculated as reaction time/accuracy. Stroop inter-
ference IES [incongruent IES–neutral IES] was calcu-
lated as inhibitory control [19, 20], the core component 
of executive function. Our previous study reported that 
very-light-intensity exercise significantly reduced Stroop 
interference compared to control. These measurements 
were used to explore rssEBR change relationships in the 
current analysis. For detailed methods and results, refer 
to Kuwamizu et al. [3]. Further exploratory analyses com-
bining pupil diameter and l-DLPFC activity measured 
by functional near-infrared spectroscopy (fNIRS) are 
addressed in Supplementary material 2: Extended data.
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Results
Statistical analyses were performed using GraphPad 
Prism V9; significance was P < 0.05.

The mean ± SD of rssEBR (blinks/min) was 32.8 ± 19.3, 
34.9 ± 19.2, and 35.0 ± 19.5 for the EX and 32.0 ± 19.4, 
27.8 ± 17.1, and 30.5 ± 19.1 for CTL, measured at Pre1, 
Pre2, and Post, respectively. Figure 2A shows the change 
in rssEBR across conditions. Our main hypothesis 
focused on differences before and after exercise and rest 
conditions, so we compared the immediate pre-/post-dif-
ferences (Post–Pre2) for both conditions using a paired 
t-test, which indicated no significant condition differ-
ences (t(23) = 0.79, P = 0.44) (Fig. 2A).

We then tested the relationship between rssEBR 
changes and Stroop task performance enhancement. 
To calculate the effect of very-light-intensity exercise 
on rssEBR, we computed the change in rssEBR as EX 
(Post–Pre2)–CTL (Post–Pre2). Similarly, for Stroop 
task performance, we analyzed the difference using EX 
(Post–Pre)–CTL (Post–Pre) [3]. The change of rssEBR 
EX(Post–Pre2)–CTL(Post–Pre2) significantly correlated with the 

reduction of Stroop interference EX(Post–Pre)–CTL(Post–Pre) 
(r (24) =  − 0.62, P = 0.001) (Fig. 2B).

Discussion
We examined whether rssEBR, potentially involving 
brain DA modulation, explains the positive impact of 
acute very-light-intensity exercise on prefrontal execu-
tive function. Although very-light-intensity exercise did 
not elicit consistent rssEBR increase, there were signifi-
cant associations between rssEBR variation and execu-
tive function enhancement post-exercise. These findings 
do not support the hypothesis that rssEBR-predicted 
neural substrates are the primary mechanism for cogni-
tive enhancement. However, they do suggest that rssEBR 
change may predict executive function improvement lev-
els following exercise.

These results do not support our hypothesis that very-
light-intensity exercise increases rssEBR. Previous studies 
have produced mixed results; for example, a single bout 
of maximal aerobic exercise increased spontaneous EBR 
in adolescent boys with attention deficit hyperactivity 

Fig. 1  Summary of experimental paradigm. A Experimental paradigm flow. A color-word Stroop task was done before and after exercise/
rest. Lateral prefrontal cortex activation was measured using functional near-infrared spectroscopy (fNIRS). B The Japanese version 
of the color-word-matching Stroop task. Participants responded with “yes” or “no” buttons, depending on whether the top font color matched 
the bottom color word or not. The task had 30 trials: 10 neutral, 10 congruent, and 10 incongruent, presented randomly. For neutral trials, the upper 
row contained crosses (XXX) in yellow, blue, green, or red, and the bottom row had color words written in black font. For congruent trials, the upper 
row had color words in colors that matched the meaning of the color word written in black in the bottom row. For incongruent trials, the upper 
row had color words in colors that did not match the meaning of the color word written in black in the bottom row to elicit cognitive conflict (i.e., 
Stroop interference)
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disorder (ADHD) but not in girls with ADHD or typically 
developing children [21]. Other studies with smaller sam-
ple sizes (n = 16 or less) also failed to detect an increase 
in post-exercise blink rate, supporting our findings [22–
24]. Here, we focused on rssEBR for 3 min immediately 
after exercise, but not during exercise. This was meant 
to exclude direct effects of physical and eye movements 
on blink rate. However, it is undeniable that DA upreg-
ulation may be eliminated immediately after exercise. 
Additionally, baseline rssEBR can vary depending on the 
study’s experimental conditions, such as visual stimuli. 
Although the baseline rssEBR was within the expected 
range and comparable to some previous data [12, 25], it 
tended to be higher overall compared to the average of 
previous studies [11], particularly on exercise condition 
days, which may reflect the motivational arousal to exer-
cise. High baseline rssEBR may have negatively affected 
the detection of a potential exercise-induced increase in 
blink rates.

Interestingly, individual variations in rssEBR change 
highly correlated with improvements in executive func-
tion performance (Fig.  2B), which supports the hypoth-
esis that rssEBR may provide mechanistic insight into 
and a useful biomarker of the impact of acute exercise 
on cognition. The direction of this correlation is similar 
to previous cross-sectional results showing that higher 
rssEBR is linked to better performance on the Stroop task 
[9]. Individual differences in exercise-induced DA release 
and receptor regulation may lead to variability in blink 
rate [12, 13], which, in turn, could predict post-exercise 
cognitive improvements.

Finally, the involvement of brain DA modulation 
in rssEBR remains uncertain [17]. Recently, it was 
reported that in humans, exercise induces the release of 
striatal endogenous DA correlated with the facilitation 
of simple decision-making reaction time [26]. Thus, to 
understand why rssEBR does not increase consistently 
with exercise, one speculative mechanism is the bal-
ance between D1 and D2 receptor activity [12] because 
their respective contributions to blink-rate change dif-
fer [27]. Other mechanisms, such as ocular factors, are 
also open for discussion.

Conclusion
Acute very-light-intensity exercise does not consist-
ently increase rssEBR, thereby not indicating the 
involvement of a blink increase-linked neural sub-
strate in enhancing executive function through very-
light-intensity exercise. However, rssEBR increased by 
exercise is predictive of individual executive function 
enhancement levels. This implies that blink rate may 
provide a novel non-invasive biomarker for predicting 
the cognitive benefits of exercise in humans.
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Fig. 2  rssEBR change and the association between rssEBR change and Stroop interference. A The differences in rssEBR for both CTL and EX 
conditions. Pre2 was selected as the baseline to compare the immediate pre- and post-exercise states, ensuring a direct assessment 
of exercise-induced changes. The box-and-whisker plot is drawn in the Tukey manner. Line plots represent individual data. B Association 
between rssEBR EX (Post–Pre2)–CTL (Post–Pre2) and Stroop interference EX (Post–Pre)–CTL (Post–Pre) The line in the scatter plot represents linear regression, 
the band represents 95% confidence. **P < 0.01, n.s.not significant
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