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Intake of l-serine before bedtime prevents 
the delay of the circadian phase in real life
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Shinobu Yasuo6 and Shigekazu Higuchi4*   

Abstract 

Background: It has been shown in laboratory experiments using human subjects that ingestion of the non‑essential 
amino acid l‑serine before bedtime enhances the advance of circadian phase induced by light exposure the next 
morning. In the present study, we tested the effect of ingestion of l‑serine before bedtime on circadian phase in real 
life and whether its effect depends on the initial circadian phase.

Methods: The subjects were 33 healthy male and female university students and they were divided into an l‑serine 
group (n = 16) and a placebo group (n = 17). This study was conducted in a double‑blind manner in autumn and 
winter. After a baseline period for 1 week, the subjects took 3.0 g of l‑serine or a placebo 30 min before bedtime for 
2 weeks. Saliva was collected twice a week at home every hour under a dim light condition from 20:00 to 1 h after 
habitual bedtime. Dim light melatonin onset (DLMO) was used as an index of phase of the circadian rhythm.

Results: DLMO after intervention was significantly delayed compared to the baseline DLMO in the placebo group (p 
= 0.02) but not in the l‑serine group. There was a significant difference in the amount of changes in DLMO between 
the two groups (p = 0.04). There were no significant changes in sleeping habits after intervention in the two groups. 
There were significant positive correlations between advance of DLMO and DLMO before intervention in the l‑serine 
group (r = 0.53, p < 0.05) and the placebo group (r = 0.69, p < 0.01). There was no significant difference in the slopes 
of regression lines between the two groups (p = 0.71), but the intercept in the l‑serine group was significantly higher 
than that in the placebo group (p < 0.01). The levels of light exposure were not significantly different between the two 
groups.

Conclusions: Our findings suggest that intake of l‑serine before bedtime for multiple days might attenuate the circa‑
dian phase delay in the real world and that this effect does not depend on the initial circadian phase.

Trial registration: This study is registered with University Hospital Medical Information Network in Japan 
(UMIN000024435. Registered on October 17, 2016).
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Background
The intrinsic period of the human circadian rhythm is 
longer than 24 h, and morning light plays an impor-
tant role in resetting the circadian rhythm to 24 h [1, 2]. 
On the other hand, light at night from artificial light-
ing causes delays in sleep timing and circadian rhythm 
phases through non-visual effects of light [3–5]. In mod-
ern society, circadian phase delays can also be caused 
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by nighttime digital media use [6, 7] and night work [8]. 
Since disruption of circadian rhythms due to these fac-
tors results in various negative health outcomes including 
insomnia, mood disorders, obesity, and type 2 diabetes, 
some countermeasures are needed [8, 9].

l-Serine is a non-essential amino acid synthesized in 
the body. It is also a precursor for the synthesis of other 
amino acids including the optical isomers D-serine and 
glycine as well as lipids and nucleotides [10] and it plays 
a role in mediating the nutritional supply for neuroglial 
cells [11, 12]. Furthermore, recent studies have shown 
that l-serine is involved in improvement of depression 
[13], Alzheimer’s disease [14], and amyotrophic lateral 
sclerosis (ALS) [15]. Those studies indicate that both 
l-serine biosynthesis and external ingestion are impor-
tant for biological functions. Moreover, a previous study 
in which sleep quality was evaluated by using wrist actig-
raphy and self-reporting questionnaires showed that 
l-serine administration improved the subjective feeling 
of sleep and tended to decrease the number of nighttime 
awakenings in humans [16].

The results showing improved sleep quality in that pre-
vious study might be due to a contribution of l-serine 
to circadian entrainment. Our previous study [17] using 
mice and healthy human subjects showed that light expo-
sure after administration of l-serine affected the phase 
shift of circadian rhythms. In the experiments using 
mice, we found that light-induced wheel-running phase 
shifts in mice that were administrated l-serine were 
greater than those in mice administrated water.

In a double-blind crossover test using twenty-one 
human subjects, subjects with a single intake of l-serine 
(3.0 g) before bedtime showed a significant circadian 
phase advance by bright light exposure in the morning 
(2000 lx, 90 min) compared with that in subjects in the 
placebo condition. The findings in our laboratory study 
indicate that l-serine may have the potential to promote 
light-induced circadian phase advance in humans. How-
ever, it was not clear whether the same results could be 
obtained in real life.

Therefore, in this study, we investigated whether l-ser-
ine intake before bedtime promotes circadian phase 
advance in real life. Since there are large individual dif-
ferences in the circadian phase in humans in real life 
[18, 19], we also examined whether the effect of l-serine 
depends on the individual initial phase of the subject.

Methods
Participants and protocol
This study was conducted in Japan (Fukuoka City) in 
October and December. Thirty-three healthy univer-
sity students participated in this study. None of the sub-
jects were engaged in shift work or night shifts during 

the experimental period. We confirmed that melatonin 
secretion in all subjects started before the usual bedtime. 
The subjects were divided into two groups: a placebo 
group (13 men and 4 women, 22.1 ± 2.5 years old) and 
an l-serine group (10 men and 6 women, 21.3 ± 1.9 years 
old). Table 1 shows the characteristics of subjects in each 
group. All of subjects were Asian living in Fukuoka City, 
Japan. Chronotype was determined by the Japanese ver-
sion of Morningness-Eveningness Questionnaire (MEQ) 
[20, 21]. There was no significant difference in sex ratio, 
age, or chronotype between the two groups. In addition, 
subjects answered their sleep habits on the Japanese ver-
sion of the Munich ChronoType Questionnaire (MCTQ) 
[22] on their school days and free days. No significant 
differences were found between the two groups about 
all parameters of sleep habits. This study was carried out 
with the approval of the Ethics Committee of Kyushu 
University. The subjects were given oral and written 
explanations, and written consent for participation in the 
study was obtained.

The experiment was conducted in a double-blind 
manner. The experiment consisted of a 1-week baseline 
period and a 2-week intervention period. After the start 
of the intervention, the subjects in each group ingested 
l-serine (3.0 g) or a placebo (Trehalose, 3.0 g) dissolved 
in 100 ml of water 30 min before bedtime every day. The 
intake dose was the same as that used in a previous study 
[16, 17]. The subjects were asked to keep their habitual 

Table 1 Characteristics of subjects in each group

Values are means and S.D

Placebo l-serine p value
(n = 17) (n = 16)

Mean age [years] 22.1 ± 2.5 21.3 ± 1.9 p = 0.30

Sex 13M 4F 10M 6F p = 0.42

MEQ score 48.1 ± 7.3 47.4 ± 8.5 p = 0.82

Sleep habits (school days)
 Bedtime 0:56 ± 0:53 0:36 ± 0:51 p = 0.29

 Sleep latency [min] 16.9 ± 11.6 15.3 ± 8.5 p = 0.65

 Sleep onset time 1:13 ± 0:58 0:51 ± 0:51 p = 0.27

 Wake time 8:12 ± 0:54 8:01 ± 1:04 p = 0.59

 Midpoint of sleep 4:42 ± 0:51 4:26 ± 0:50 p = 0.36

 Sleep period time [h] 7.00 ± 0.77 7.16 ± 0.98 p = 0.60

Sleep habits (free days)
 Bedtime 1:18 ± 1:12 1:23 ± 0:47 p = 0.83

 Sleep latency [min] 17.2 ± 12.2 15.3 ± 8.5 p = 0.60

 Sleep onset time 1:35 ± 1:18 1:38 ± 0:50 p = 0.91

 Wake time 9:11 ± 1:24 9:03 ± 0:55 p = 0.74

 Midpoint of sleep 5:23 ± 1:17 5:20 ± 0:47 p = 0.90

 Sleep period time [h] 7.59 ± 0.83 7.41 ± 0.82 p = 0.54

Social jetlag [h] 0.68 ± 0.68 0.90 ± 0.75 p = 0.37
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sleep-wake schedule during the experiment. Excessive 
alcohol drinking and ingestion of sleeping pills were pro-
hibited. The subjects were asked to record their sleep 
diary and wear a wrist actigraph device (MotionWatch 
8, CamNtech, Cambridge, UK) for 24 h to determine 
their daily sleep-wake schedule and daily light exposure. 
The average illuminance of light exposure was log-trans-
formed and calculated 5 h after the average wake time 
and 5 h before the average bedtime before and during the 
intervention period.

Saliva samples for melatonin assays were collected by 
each subject at home twice a week (on Thursday and Sun-
day). The subjects were forbidden from ingesting caffeine 
and performing strenuous exercise on the day of saliva 
collection. Saliva samples were collected every hour from 
20:00 to each subject’s bedtime using a cotton swab (Sali-
vatte® Sarstedt, Germany) under dim light in their home. 
The subjects were instructed to use an incandescent light 
bulb as indirect lighting from 19:30 in the room to make 
dim light (< 15 lx as measured by MotionWatch8). The 
subjects were also instructed to send a text message to 
the experimenter immediately after saliva collection.

Melatonin concentration in saliva was quantified by a 
radioimmunoassay (Buhlmann, RK-DSM2, Switzerland). 
Dim light melatonin onset (DLMO), a reliable marker of 
circadian phase [23, 24], was determined by linear inter-
polation between the time points before and after the 
melatonin concentration increased and stayed above the 
3.0 pg/mL threshold [25].

Statistical analysis
One subject who showed an irregular sleep/wake sched-
ule was excluded from the analysis. Even after exclusion, 
there was still no significant difference in sex ratio, age, 
chronotype or sleep habits between the two groups. 
Another subject whose wearing time of the actigraph 
device during the day was too short for accurate deter-
mination of light exposure was also excluded from the 
analysis.

In the statistical analysis, a two-sided, Welch’s t test 
was used for comparison of sleep habits, DLMO, amount 
of DLMO advance, and light exposure between the two 
groups. A two-sided paired t test was used for investi-
gating changes in sleep habits and DLMO within the 
groups. Greenhouse–Geisser correction was performed 
whenever Mauchly’s test of sphericity was significant. 
Pearson’s correlation test was used to assess the rela-
tion between DLMO before intervention and DLMO 
advance in each group. Afterwards, the general linear 
model (GLM) was used for comparison of the slopes and 
intercepts of regression lines between the two groups. A 
p value less than 0.05 was considered statistically signifi-
cant. Statistical analyses were performed using SPSS soft-
ware ver. 25 (IBM, NY, USA).

Results
There were no significant differences in bedtime (p = 0.47), 
wake time (p = 0.55), time in bed (p = 0.98), and DLMO 
(p = 0.26) between the two groups before intervention 
(Table 2 and Fig. 1). A significant difference before and after 
intervention was found for DLMO in the placebo group 
but not in the l-serine group (Table 2). DLMO in the pla-
cebo group was significantly delayed after intervention (t = 
− 2.59, p < 0.05). No significant changes in sleep measure-
ments after intervention were found in the two groups.

The magnitudes of changes after intervention were 
compared in the placebo group and l-serine group 
(Table 3). A significant difference in changes in DLMO 
was found between the two groups (placebo < l-serine, 
t = − 2.14, p = 0.04) (Table 3 and Fig. 2).

Figure  3 shows the results for mean light exposure. 
No significant differences were found after wake time 
before intervention (p = 0.89), after wake time during 
intervention (p = 0.84), before bedtime before interven-
tion (p = 0.90), and before bedtime during intervention 
(p = 0.58).

Figure 4 shows the relationship between DLMO before 
intervention and DLMO advance. There were significant 

Table 2 DLMO and sleep/wake time before and after intervention in each group

Values are means and S.D

*p < 0.05

Placebo(n = 17) l-serine(n = 15) p value 
(Before 
intervention,
between 
groups)

Before
 intervention

After 
intervention

p value
(before vs. 
after)

Before
intervention

After
intervention

p value
 (before vs. after)

DLMO 22:56 ± 1:11 23:22 ± 0:52 p = 0.02* 22:29 ± 1:06 22:23 ± 0:56 p = 0.62 p = 0.26

Bedtime 1:29 ± 0:50 1:37 ± 0:39 p = 0.21 1:16 ± 0:54 1:43 ± 0:39 p = 0.13 p = 0.47

Wake time 8:45 ± 1:06 8:59 ± 0:55 p = 0.16 8:32 ± 0:54 8:48 ± 0:32 p = 0.30 p = 0.55

Time in bed [h] 7.27 ± 0.86 7.36 ± 0.71 p = 0.53 7.28 ± 0.61 7.09 ± 0.73 p = 0.24 p = 0.98
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positive correlations between the advance of DLMO and 
DLMO before intervention in the l-serine group (r = 0.53, 
p < 0.05) and the placebo group (r = 0.69, p < 0.01).

The GLM with groups as a dependent variable and 
DLMO before intervention as a between-subject factor 
was used to test independence of DLMO before interven-
tion. The main effect of groups was not statistically sig-
nificant (p = 0.26), and independence of DLMO before 
intervention was thus confirmed. The GLM with DLMO 
advance as a dependent variable, groups as a between-
subject factor and DLMO before intervention as a covari-
ate was used to compare the slopes of regression lines. The 
interaction between groups and DLMO before interven-
tion was not statistically significant (p = 0.71). Therefore, 
it was confirmed that there was no significant difference 
in slopes of regression lines. The GLM without interaction 
between groups and DLMO before intervention was used 
to test the significance of regression and to compare the 
intercepts of regression lines. The effect of DLMO before 
intervention was statistically significant (p < 0.001), and 
the significance of regression was therefore confirmed. 
Moreover, the main effect of groups was statistically signif-
icant (ηp

2 = 0.30, p < 0.01). This means that the intercept 
of the regression line in the l-serine group was signifi-
cantly greater than that in the placebo group.

Discussion
In this study, a significant delay in DLMO was confirmed 
in the placebo group but not in the l-serine group. More-
over, the amount of DLMO changes was significantly dif-
ferent between the two groups. However, given that there 
were no significant differences between the groups in sex, 
age, MEQ score, and results for DLMO and sleep habits 
before the intervention, it is difficult to interpret that the 
characteristics of the group caused the result of phase 

Fig. 1 DLMO and sleep/wake time before and after intervention in each group (mean ± S.D., *: p < 0.05) (The triangles represent DLMO and the 
thick horizontal bars represent bedtime to wake time)

Table 3 Amount of advance in DLMO and sleep/wake time in 
each group

Values are means and S.D. *p < 0.05

Amount of increase only in time in bed

Placebo
(n = 17)

l-serine
(n = 15)

p value

DLMO − 0:25 ± 0:41 0:05 ± 0:41 p = 0.04*

Bedtime − 0:08 ± 0:26 − 0:28 ± 1:06 p = 0.30

Wake time − 0:13 ± 0:37 − 0:16  ± 0:57 p = 0.88

Time in bed [h] 0.09 ± 0.54 − 0.19 ± 0.61 p = 0.18

Fig. 2 Individual data for amount of DLMO advance (mean ± S.D., *: 
p < 0.05)
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delay in the placebo group. Furthermore, the amounts of 
exposure to daily light just before bedtime and after wake 
time, which are thought to affect the results of DLMO 
shift, were not significantly different between the two 
groups.

In the present study, we showed that l-serine has a pre-
ventative effect on the delay of circadian rhythms. How-
ever, unlike in the laboratory experiments conducted in 
our previous study [17], no significant phase advance of 
the circadian rhythm was observed by l-serine intake 
before bedtime. One possible reason for this may be the 
difference in the light environment between the labora-
tory and field experiments. In the laboratory experiment, 
evening light (from 6 pm to bedtime) was dim light (< 15 
lx), whereas in the field experiment, the subjects were 
exposed to night light by artificial lighting except on days 
when saliva samples for melatonin measurement were 

taken. It is known that artificial lighting at night in real 
life delays the phase of circadian rhythms [26, 27]. In 
other words, the lack of phase advance in this study may 
have been canceled out by phase delay due to exposure to 
light at night.

Thus, if the effects of night light cannot be avoided in 
daily life, increasing l-serine intake might be a possi-
ble way to induce the phase advance that was observed 
in the laboratory experiments [17]. However, while a 
dose-response relationship was observed for the effects 
of l-serine in a previous animal study [17], no compari-
son of the effects of increased intake in humans has been 
conducted. For example, patients with ALS were tested 
with l-serine at doses of up to 15 g twice daily for 6 
months and no serious adverse effects were observed and 
the drug is generally considered safe [15]. Since l-serine 
is “generally recognized as safe” by the Food and Drug 
Administration (FDA), field studies should be conducted 
in the future to examine the effects of increased doses of 
l-serine on circadian rhythm phase advance.

In addition to eating behavior, exercise habits have a 
potential to impact on light-induced circadian phase shift 
[28]. In many studies, physical activity level was meas-
ured by using a wrist accelerometer [29, 30]. However, in 
the present study, wrist accelerometer data were meas-
ured to mainly determine the daily sleep-wake timing 
and daily light exposure of the subjects and we instructed 
the subjects to remove the wrist accelerometer during 
intense exercise to avoid damage to the device. Deter-
mination of the interactions between light exposure and 
physical activity including their timing and intensity in 
terms of circadian phase shift in daily life would be chal-
lenging but is expected to be done in a future study.

We did not expect the delay in DLMO observed in 
the placebo group. This result means that the phase of 
the circadian rhythm was delayed in the placebo group, 
and there could be several reasons for this. First, in the 

Fig. 3 Five‑hour mean light exposure after wake time and before bedtime (mean ± S.D.)

Fig. 4 Relationship between DLMO before intervention and DLMO 
advance (*: p < 0.05)
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period of October to December, when this experiment 
was conducted, the time of sunrise is becoming later and 
the amount of sunshine is less than that in summer in the 
Northern Hemisphere. It is well known that the light and 
dark cycle of sunlight is the strongest zeitgeber for circa-
dian rhythm and that morning light is important to reset 
the human circadian period, which is intrinsically longer 
than 24 h [1]. Some studies showed that circadian phase 
in winter was later than that in summer in countries in 
the Northern Hemisphere [31–33]. Next, the subjects in 
this study were healthy university students. University 
students generally tend to be night owls biologically and 
socially [34, 35] and experience relatively little light expo-
sure in the morning and more light exposure later in the 
day in terms of both intensity and duration [36, 37]. It is 
possible that these factors affected the easiness for delay 
of circadian phase in daily life.

In this study, trehalose was used as a placebo. Although 
animal studies suggested that trehalose has effects in 
neurodegenerative diseases such as Huntington’s disease 
[38], Alzheimer’s disease [39], and ALS [40], there has 
been no study in which the relationship between treha-
lose ingestion and circadian rhythms was investigated 
in animals and humans. On the other hand, it has been 
reported that carbohydrate intake is related to sleep and 
circadian rhythms in humans through blood glucose lev-
els [41, 42]. In addition, animal studies have shown that 
insulin directly affects the peripheral circadian clock 
[43, 44]. Although trehalose is converted to glucose and 
increases insulin concentrations [45], the dose of treha-
lose used as a placebo in this study (3.0 g) was very small, 
and its effect on glucose and insulin concentrations is 
likely to be limited. Therefore, the possibility that the 
placebo condition directly affected the delay in circadian 
rhythm is considered negligible. However, since we did 
not examine or control for the subjects’ daily diet in this 
experiment, we cannot exclude the possibility that dif-
ferences in eating behavior between the two groups may 
have affected the results.

In this study, the regression coefficient by DLMO before 
intervention was significant for the amount of DLMO 
advance. A significant positive correlation between 
advance of DLMO and DLMO before intervention was 
found in both groups. This indicates that the later DLMO 
was, the greater was the subsequent DLMO advance. One 
probable cause of this is that the phase angle between the 
circadian phase and sleep timing affected the amount of 
circadian phase shift. When sleep timing is primarily tied 
to social factors, late circadian timing results in a short 
phase angle. If the phase angle is short, the phase delay 
zone around DLMO of the phase response curve (PRC) 
to light [46, 47] is masked by sleep. It is thought that the 
circadian phase tends to advance thereafter.

On the other hand, the effect of the group on DLMO 
before intervention was not significant, and there was no 
difference in DLMO before intervention between the two 
groups and DLMO before intervention did not depend 
on the group. Uniformity of the slopes of regression lines 
in the two groups was also shown. In addition, a signifi-
cant difference in the intercepts of regression lines was 
found between the two groups. These results suggest that 
the DLMO advance in the l-serine group was greater 
than that in the placebo group in all ranges of confirmed 
DLMO in this study. The fact that the effect of l-serine 
was confirmed regardless of the subject’s circadian phase 
means that l-serine may be useful for various chrono-
types of people.

In recent years, much attention has been focused on 
research on the relationship between social jetlag and 
health [48]. In the present study, the effects of social 
jetlag did not be assessed because the average social jet-
lag of the subjects was less than 1 h (Table 1). This small 
social jetlag may be related to the less social constraints 
of weekday life for university students. However, it is 
known that social jet lag is greater in nocturnal chrono-
types [49] and that loss of morning light exposure due 
to weekend recovery sleep leads to a delay of the circa-
dian phase [50]. The effects of l-serine in populations 
with greater social jetlag should be examined in future 
studies.

The effect of l-serine was confirmed in an autumn/
winter experiment, but it is necessary to consider sea-
sonal differences in the effect of l-serine in consideration 
of the day length and amount of daytime sunshine in var-
ious seasons. However, considering that seasonal affec-
tive disorder [51], which is presumed to be associated 
with circadian rhythm disorder, is likely to develop in the 
period in which this study was conducted and consider-
ing the results of a study showing that l-serine enhanced 
the antidepressant effect of light in a mouse model of 
seasonal affective disorder [52], the effect of l-serine on 
light-induced circadian phase advance in humans that 
was confirmed in this study is a notable finding. This 
study was conducted in healthy subjects, and the effec-
tiveness of l-serine in patients with circadian rhythm dis-
orders as well as patients with seasonal affective disorder 
should also be examined.

Finally, although the mechanism by which l-serine 
affects the light-induced phase shift of circadian rhythms 
is not yet well understood, our previous study in mice 
(CBA/N) showed that light exposure after l-serine 
ingestion altered the long-term expression pattern of 
clock genes in the suprachiasmatic nucleus (SCN) [17]. 
As a possible mechanism for this, we focused on the 
MNDA receptor, which is believed to have a major role 
in light signaling in the SCN [53]. However, since the 
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effectiveness of l-serine was not blocked by MK801, an 
antagonist of the NMDA receptor, we considered that 
this receptor was not involved [17]. On the other hand, 
we found that antagonists of the  GABAA receptor com-
pletely blocked the effectiveness of l-serine. In other 
words, l-serine was thought to affect circadian rhythm 
phases via activation of  GABAA receptors. This is con-
sistent with the results of a previous study showing that 
the sedative and hypnotic effects of l-serine are medi-
ated by  GABAA receptors [54].  GABAA is also known to 
play an important role in circadian clock function in the 
SCN [55]. Therefore, the light-induced phase advance of 
l-serine in mice may be involved in the phase shift of cir-
cadian rhythms via the GABAergic system. Furthermore, 
l-serine did not affect the light-induced expression of 
c-fos, Per1, and Per2 in the SCN, but it altered the long-
term expression of Per2 and Bmal1 [17]. These results 
suggest that the action of l-serine occurs in extra-SCN 
regions that convey information to the SCN via a post-
transcriptional process. However, given that the mecha-
nism of effects of light may differ among species [17], it 
is unclear whether the same mechanism of action is also 
true in humans. In addition, there are limitations in refer-
ring to the mechanism based on the results obtained in 
the present field study.

Conclusions
The results of this study showed that external intake of 
l-serine before bedtime for multiple days might enhance 
circadian phase advance by light in the morning and 
suppress the circadian phase delay. The results also sug-
gested that the effect of l-serine does not depend on the 
initial circadian phase. l-serine intake before bedtime is 
expected to help prevent the delay of circadian rhythm in 
real word conditions in various chronotypes of people.
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