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Abstract 

Background:  Actigraphy is a method used for determining sleep (S)/wakefulness (W) by actigraph, a device 
equipped with a built-in accelerometer and an algorithm validated for each device. The S/W determination algorithm 
for the waist-worn actigraph FS-760 has been formulated for adults. However, the algorithm for children has not been 
established. The purpose of this study was to formulate an algorithm for discriminating S/W in school-aged children 
using FS-760 and to evaluate its validity. We further tested the generalizability of existing algorithm for adults by 
applying it to the children’s activity data and then examined factors associated with adult algorithm agreement rates 
by multiple regression analysis using combined adult and children data.

Methods:  Sixty-five, healthy, school-aged children (aged 6 to 15 years) were recruited and randomly assigned to 
two groups: A (n = 33) and B (n = 32). They underwent 8-h polysomnography (PSG) and wore FS-760 simultaneously 
to obtain activity data. To determine the central epoch of the sleep/wake states (𝑥), a five-order linear discriminant 
analysis was conducted using the activity intensity of group A for five epochs (𝑥−2, 𝑥−1, 𝑥, 𝑥+1, 𝑥+2; 10 min) and evalu-
ate its accuracy with the activity of group B. To reveal the factors associated with adult algorithm agreement rate, we 
integrated the activity, age, sleep efficiency of 15 adults (aged 20 to 39 years) and those of 65 children for multiple 
regression analysis.

Results:  The mean agreement rate of the developed algorithm was 91.0%, with a mean sensitivity (true sleep detec-
tion rate) of 93.0% and a mean specificity (true wakefulness detection rate) of 63.9%. The agreement rate of the adult 
algorithm applied to children’s activity was significantly lower (81.8%) than that of the children algorithm. Multiple 
regression analysis showed that the agreement rates calculated by the adult algorithm were significantly related to 
mean activity of the 𝑥 epoch in NREM and REM sleep as well as age and sleep efficiency.

Conclusions:  The S/W states in school-aged children can be reliably assessed using the developed algorithm for 
waist-worn actigraph FS-760. Since the accuracy of the adult algorithms decreased when applied it to children which 
have different activity levels during sleep, the establishment and validation of population-specific S/W algorithms 
should be required.
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Background
Polysomnography (PSG) is the gold-standard diagnos-
tic method for evaluating sleep stages; it uses electro-
encephalography (EEG), electrooculography (EOG), 
and electromyography (EMG). While PSG can provide 
a detailed assessment of sleep status, it requires special 
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equipment as well as skilled technicians, and it is hard 
to examine the long-term and continuous sleep sta-
tus assessments. The primary sleep assessment method 
as an alternative to PSG is actigraphy. Actigraphy is a 
method using an actigraph, a small device equipped with 
a built-in accelerometer. By applying an activity intensity 
measured by actigraphs to the algorithm validated for 
each device [1–4], it is possible to determine sleep (S)/
wakefulness (W). Although actigraphy cannot be used 
to assess detailed sleep stages, they are less invasive and 
do not interfere with the one’s living environment, thus 
making them suitable for screening and long-term sleep/
wake recording under real-world situation objectively. 
In recent years, the use of actigraphy has expanded into 
various fields in public health studies [5–7].

As described, S/W algorithms of actigraphy were vali-
dated among various disorders and age groups including 
children [8–10], thus leading to the development of guide-
lines for diagnosing pediatric sleep disorders [11, 12].

The presence of these guidelines would cause the appli-
cation of the algorithm only being validated with adults 
to children’s activity; however, the extrapolation is gener-
ally not recommended because of the lack of reliability. 
In fact, children tend to move a lot during sleep, which 
may underestimate the total sleep time measured by 
actigraphs [13]. Considering that children have different 
activity characteristics during sleep, it would be neces-
sary to formulate a pediatric S/W scoring algorithm.

In addition to differences in overall nocturnal activ-
ity, children differ from adults in many aspects, so a 
multifactorial contribution is assumed if the accuracy 
of the algorithm is affected. Since children are charac-
terized by weaker motor inhibition in REM sleep [14] 
and greater sleep need [15, 16], sleep stage-dependent 
activity, sleep efficiency, and other age-dependent fac-
tors may also be involved. It would also lead to accuracy 
issues in non-pediatric populations where such factors 
are common (e.g., patients with sleep-related breath-
ing diseases with high activity during nighttime sleep). 
Therefore, clarifying what characteristics of children are 
relevant to sleep-wake determination algorithms will 
provide useful information for understanding methods 
for estimating sleep-wake from activity levels, as well as 
for applying the methods to various populations.

In this study, we evaluated the validity of waist-worn 
actigraph FS-760 (ACOS Co., LTD), which has only been 
validated with an adult, by formulating an S/W scoring 
algorithm for healthy, school-aged children. Among the 
sleep parameters to be estimated, we optimized sleep 
latency and wake after sleep onset time, as reported by 
Nakazaki et al. [4]. We also tested the generalizability of 
the existing algorithm for adults by applying it to the chil-
dren’s activity data and then examined factors associated 

with adult algorithm agreement rates by multiple regres-
sion analysis using combined adult and children data.

Results
School‑aged children S/W scoring algorithm
The S/W scoring algorithm was obtained by performing 
discriminant analysis using the activity intensity and PSG 
data (total 6900 epochs) obtained from the 33 partici-
pants in group A.

Here, z ≥ 1 denotes wake (WACT​) and z < 1 denotes 
sleep (SACT​). 𝑥−2, 𝑥−1, 𝑥, 𝑥+1, and 𝑥+2 indicate the activity 
intensity at 4 min before the evaluation epoch, at 2 min 
before the evaluation epoch, at 2 min after the evaluation 
epoch, and 4 min after, respectively.

Validity of the school‑aged children S/W scoring algorithm
The children algorithm formulated in this study was 
adapted to the activity data of group B, an independent 
group. The agreement rate, sensitivity, and specificity for 
each sleep stage were calculated (Table  1). The agree-
ment rate for the entire recording period was 91.04 ± 
4.94%, sensitivity 92.95 ± 6.32%, and specificity 63.88 ± 
35.82%. In group A, the agreement rate was calculated in 
the same way. As the results showed no statistically sig-
nificant differences between the two groups for any of the 
items, the following analyses were performed with the 
data by merging both groups.

Optimizing the calculation of sleep parameters 
with the FS‑760
The number of consecutive SACT​ epochs in the defini-
tion of SLACT​ (see the “Methods” section) ranged 1–10 
epochs showed no statistically significant difference 
between SLACT​ and SLPSG. When the number of epochs 
was 4 epochs, ICC was > 0.6 [17] and delta was mini-
mum (Fig. 1). Therefore, the 4 consecutive SACT​ epoch 
sequences were adopted as the optimal condition for 
SLACT​. As in SLACT​, the ICC was > 0.6 and delta was 
minimal when the number of consecutive WACT​ epochs 
set at 5 for WASOACT​ (Fig. 2), we adopted it as the opti-
mal condition for WASOACT​. The sleep parameters 
calculated by PSG and activity when optimal condi-
tions (SLACT​: n = 4; WASOACT​: n = 5) were applied are 
shown in Table 2. There were no statistically significant 
difference between the sleep parameters calculated from 
the PSG data and those from the activity for any of the 
items; there was a significantly positive ICCs between 
the two parameters and improved after optimization for 
all the variables.

z = 0.108294 x
−2 + 0.147294 x

−1 + 0.230126 x

+ 0.099353 x
+1 + 0.059580 x

+2
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Accuracy of adult S/W algorithms in school‑aged children
Table 3 shows the agreement rate, sensitivity, and speci-
ficity for each sleep stage of the S/W scoring, as calcu-
lated by adapting adult S/W scoring algorithms to the 
activity data of 65 children. The accuracy of the adult 
S/W scoring algorithm was significantly lower than that 
of the developed algorithm with children, except for the 
rate of agreement and specificity for Stage W (agreement 
rate, sensitivity, and specificity are 81.84 ± 8.83%, 81.64 
± 10.62%, and 79.17 ± 28.47%, respectively). On the 
other hand, the result of adapting the adult scoring algo-
rithm to the activity data of the 15 adults showed that the 
accuracy was almost the same as that of existing reports 
[4, 18]: agreement rate 84.41 ± 1.88%, sensitivity 91.15 ± 
1.91%, and specificity 53.19 ± 3.96%.

Differences in activity intensity between adults 
and children
Two-way analysis of variance showed no significant 
interaction between the group and epochs. However, 

there was a significant main effect of the group; activ-
ity intensity was significantly higher in children than in 
adults during all sleep stages (W, NREM, and REM) (see 
Supplemental Fig.).

Searching for factors contributing to the accuracy 
of the adult S/W algorithm
To clarify the factors related to the agreement rate, we 
conducted a multiple regression analysis using the agree-
ment rate of the adult algorithm as the objective variable 
(Table  4). Since the multicollinearity was not violated, all 
five explanatory variables (age, sleep efficiency, and the 
average activity of each 𝑥 during Wake, NREM sleep, 
and REM sleep) were included. Adjusted-R2 (0.720) indi-
cated that the model was judged to be a good fit (F (5,70) 
= 39.602, P < 0.0001). Agreement rates calculated by the 
adult algorithm were significantly associated with the mean 
activity in NREM and REM sleep of 𝑥 epoch as well as age 
and sleep efficiency. On the other hand, the average activity 
of 𝑥 epochs of W showed no significant association.

Table 1  Accuracy of S/W determination using the FS-760 actigraph

Group A Group B t p

Agreement rate (%) Overall 91.01 ± 5.41 91.04 ± 4.94 -0.02 0.984

Stage 1 66.11 ± 30.29 57.35 ± 33.21 1.11 0.271

Stage 2 92.27 ± 7.31 92.18 ± 7.73 0.049 0.961

Stage 3+4 97.94 ± 2.32 98.29 ± 2.55 -0.584 0.561

Stage REM 88.47 ± 19.59 93.09 ± 9.71 -1.210 0.232

Stage W 66.99 ± 30.44 62.33 ± 33.42 0.587 0.560

Sensitivity (%) 93.17 ± 6.19 92.95 ± 6.32 0.138 0.891

Specificity (%) 66.85 ± 31.27 63.88 ± 35.82 0.356 0.723

Fig. 1  Optimization of sleep latency determined by the FS-760 (SLACT​). SLACT​ is the interval between the time lights were turned off and the time 
of the first SACT​ (sleep-onset time) among the sleep states that appeared continuously for more than n epoch for the first time after the lights were 
turned off. The horizontal axis shows the n defined above. The vertical axis shows sleep latency (min) defined for each n. *P < .01 and **P < .001, 
significant intraclass correlation between sleep latency determined by polysomnography (SLPSG) and SLACT​
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Discussion
In this study, we developed an S/W scoring algorithm for 
the FS-760 in healthy school-aged children.

First, we established the five-order linear discriminant 
equation as the S/W scoring algorithm using a total of 
five epochs of activity, including two epochs before and 
after, following previous studies using group A’s activity 

data and PSG’s sleep scoring data. The formulated S/W 
scoring algorithm was applied to the activity data of 
group B, which was an independent population with no 
difference in age, sex, or body size, to determine S/W. 
The results showed that the agreement with PSG data 
was 90.92 %. Out result was comparable to the agreement 
rates which have been reported in the range of 85 to 96% 

Fig. 2  Optimization of wake after sleep onset determined by the FS-760 (WASOACT​). WASOACT​ is the total time that wake epochs determined by 
the FS-750 (WACT​) appeared continuously for more than n epochs after sleep onset. The horizontal axis shows the n defined above. The vertical axis 
shows wake after sleep onset (min) defined for each n. †P < .01 and ‡P < .001, significant difference between WASOPSG and WASOACT​ (paired t-test). 
Values are expressed as mean ± SE

Table 2  Optimized sleep parameters determined by the FS-760 actigraph

PSG FS-760

Before optimization After optimization

Mean±SE Mean±SE t p icc p Mean±SE t p icc p

Sleep latency (min)   10.00 ± 9.83     7.85 ± 9.16 -1.292 0.199 0.649 <0.001     9.38 ± 11.61 -0.326 0.745 0.654 <0.001

Wake after sleep onset (min)   26.52 ± 29.69   44.37 ± 34.27 3.173 0.002 0.491 0.001   24.65 ± 27.92 0.960 0.339 0.613 <0.001

Total sleep taime (min) 380.31 ± 32.24 364.62 ± 37.27 -2.567 0.011 0.524 <0.001 385.97 ± 34.96 -0.371 0.711 0.625 <0.001

Sleep efficiency (%)   90.55 ± 7.68   86.81 ± 8.87 -2.567 0.011 0.524 <0.001     91.9 ± 8.32 0.960 0.339 0.613 <0.001

Table 3  Comparison of accuracy between school-aged children and adult S/W algorithms adapted to children’s data respectively

Algorithm for child Algorithm for adult t p

Agreement rate (%) Overall 91.03 ± 5.14 81.84 ± 8.83 -7.254 <0.001

Stage 1 61.8 ± 31.82 37.12 ± 31.23 -4.462 <0.001

Stage 2 92.23 ± 7.46 78.28 ± 12.78 -7.600 <0.001

Stage 3+4 98.11 ± 2.43 93.18 ± 6.08 -6.085 <0.001

Stage REM 90.74 ± 15.59 76.07 ± 22.03 -4.383 <0.001

Stage W 64.70 ± 31.78 77.11 ± 27.27 2.390 0.018

Sensitivity (%) 93.06 ± 6.20 81.64 ± 10.62 -7.490 <0.001

Specificity (%) 65.39 ± 33.36 79.17 ± 28.47 2.533 0.013
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[1–4, 19–22]. The sensitivity and specificity also showed 
a trend of high sensitivity and low specificity, as in many 
previous reports [1–4, 20, 21].

One of the problems with the use of actigraphs has been 
pointed out the difficulty in detecting wake [23, 24]. In par-
ticular, it was difficult for actigraphy to distinguish silent 
awakeness from sleep based on the activity [1, 21, 25, 26]. 
When using the algorithm developed in this study, the 
specificity with PSG data was approximately 63%, which is 
a little lower than that reported for the FS-760 adult algo-
rithm (65%) [4] but approximately the similar or higher 
than in the other previous reports (34–58%) [3, 21, 27]. In 
this study, optimization of the definition of sleep param-
eters was conducted following previous studies; the opti-
mal settings were four consecutive epochs for sleep onset 
latency and five consecutive epochs for wake after sleep 
onset. When the sleep variables were recalculated by adapt-
ing this optimization, there was no longer a significant dif-
ference in those calculated by PSG in all sleep variables (SL, 
WASO, TST, and SE). Thus, the sleep variables calculated 
using this algorithm were reasonable. Note that the data 
used in this study were obtained from the first night PSG, 
so it is likely that the first night effect [28] is occurring in 
WASO.

To examine the generalizability of the adult S/W scor-
ing algorithm, we applied it to the activity data of 65 
school-aged children in the present study; then, S/W 
scoring was conducted. The overall agreement rate of the 
adult S/W algorithm was significantly lower than that of 
the school-aged children. Although the accuracy of spec-
ificity increased by approximately 12 points, the accuracy 
of the other parameters decreased by approximately 10 
points.

To clarify the factors associated with this decreased 
inaccuracy, multiple regression analysis was conducted 
using the agreement rate of adult algorithm as the objec-
tive variable with integrated the 80 data of adults and 
children. Results showed that the average amount of 
activity during sleep, sleep efficiency, and age were sig-
nificantly associated. Since children were more active 

during sleep, their S/W determination algorithm must 
use a high threshold to determine W. In fact, the coeffi-
cients of their S/W scoring algorithm was smaller than 
those of the adult algorithm. When the adult S/W scor-
ing algorithm with the lower threshold was applied to the 
children’s activity data, the probability of being scored as 
W, with a discrimination score z ≥ 1, further increases. It 
has been reported that children shifted their body posi-
tion during sleep more frequently than adults [13], and 
that the accuracy of S/W scored by the actigraph was 
lower [8, 10]. Considering that there are differences in 
the amount of activity during sleep between children and 
adults, and that the activity during sleep was also a major 
determinant of accuracy during the multiple regression 
analysis, the population with higher activity levels dur-
ing sleep due to concomitant sleep disorders including 
sleep apnea, and inappropriate sleep environment (noise, 
inappropriate temperature/humidity/bedding, etc.) were 
highly likely to show the similar inaccuracy. For the pop-
ulation, it was necessary to validate a unique S/W deter-
mination algorithm that considers population activity 
characteristics. A low accuracy has been reported in such 
populations [24, 29]. As revealed by the multiple regres-
sion analysis in this study, age and sleep efficiency may 
have contributed to the accuracy, which were independ-
ent of activity. These results were consistent with existing 
studies [30].

Although the results of this study indicated the need to 
validate a unique S/W determination algorithm for chil-
dren, there were reports showing that the accuracy of the 
adult algorithm may be maintained even when adapted 
to children. In these reports, the agreement rate with 
PSG were 87–90% [9, 29, 31, 32]. One possible factor 
causing difference between these reports and the present 
study is the site of attachment of the actigraph. The pre-
vious reports attached actigraphs to the non-dominant 
wrist (extremity region) while we attached it the waist 
(lumbar region) in the present study. Differences in the 
activity intensity depending on the attached site have also 
been reported. Previous reports have shown lower activ-
ity in the trunk than in the wrist [33]. Position shifts dur-
ing sleep were more common in children than in adults 
[13]; since the actigraph FS-760 measured the activity of 
the trunk, the amount of body movements during sleep, 
which is usually small in adults compared to the periph-
eral, is relatively large in children. This may account for 
the discrepancy with the results of the previous studies. 
On the contrary, Paavonen et al. reported that in children 
aged 7–12 years, the actigraph is equally accurate at the 
wrist and the waist [34], suggesting the discrepancy may 
depend on the device characteristics.

As mentioned above, the amount of activity may dif-
fer between the wrist and trunk, and the accuracy of 

Table 4  Multiple regression analysis with agreement rate of 
algorithm for adults as the objective variable

β partial regression coefficient, ***P < 0.0001

β t p

age -0.122 -1.778 0.080

Average activity of REM in x epoch 0.137 2.204 0.031

Average activity of NREM in x epoch -0.903 -10.898 <0.0001

Average activity of Wake in x epoch -0.016 -0.195 0.846

sleep efficiency 0.386 5.929 <0.0001

R2 0.720***
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the actigraph may vary. However, the results of this 
study indicate that a waist-worn actigraph has sufficient 
accuracy to determine the S/W as well as a wrist-worn 
actigraph. Wearing the actigraph on the waist is less bur-
densome and less conspicuous compared to the wrist. 
Therefore, waist-worn actigraph is considered more 
applicable to children who are not accustomed to wear-
ing wristwatches.

This study has several limitations: the children included 
in this study were 6–15 years old; only elementary to 
middle-school students were included in the study. 
Therefore, preschoolers, including newborns, should 
also be considered in future studies. In addition to age, 
only healthy subjects without sleep disturbances were 
included in this study. Because the actigraph used in 
this study was worn on the trunk, it may be necessary to 
examine the differences in the wearing site in future stud-
ies. FS-760 is a simple wearable device that can measure 
only activity intensity. In the future, it is one of the pos-
sibilities to consider further enhancing its accuracy as a 
multi-wearable device by combining it with a heart rate 
monitor and other devices [35]. The time epoch for the 
FS-760 used in this study is 2 min; 4 consecutively scored 
sleep stages (1 epoch = 30 s) were re-classified as either 
sleep (sleep epochs determined by PSG, SPSG) or wake 
(wake epochs determined by PSG, WPSG) every 2 min. 
So it is possible that Wpsg is more likely to contain obvi-
ous wakes rather than W in PSG, and that this procedure 
may lead the high specificity.

Conclusion
In this study, we developed an algorithm for the S/W 
scoring of a waist-worn actigraph FS-760 in school-aged 
children. The resultant algorithm was then validated 
using PSG data to determine whether its accuracy in 
children was similar to that in the adults. We also exam-
ined the differences between the resultant and estab-
lished adult algorithms and clarified the importance of 
validating the scoring algorithm for specific population. 
Our results may be applied in the fields of sleep re-explo-
ration and sleep medicine in the future, particularly in 
interventions targeted for school-aged children.

Methods
Formulation of the algorithm for school‑aged S/W scoring
Subjects
Sixty-seven school-aged children participated in this 
study. Screening PSG, questionnaires and medical exami-
nation of children and their caregivers confirmed that 
the participants had no severe mental, physical, or sleep 
disorders. Two children who were unable to complete 
the protocol were excluded from the analyses. Finally, we 
recruited 65 children (41 boys, 24 girls; mean age 10.5 ± 
2.6 years, aged 6 to 15 years) for this study. Following the 
split-sample method [36], they were randomly assigned 
to two groups: group A (33 participants) and group B 
(32 participants). There were no significant differences 
in %male, age, height, weight, and BMI between groups 
(Table 5).

Procedure
This study was conducted in the sleep laboratory unit 
of the National Institute of Mental Health, National 
Center of Neurology and Psychiatry. We simultaneously 
recorded the sleep state and activity intensities during 
sleep using PSG and actigraphy.

PSG recording
The lights-out time in the laboratory was determined 
according to the participants’ habitual bedtime in their 
home records (sleep diary) preceding the experiments. 
In principle, the time in bed was set at 7 h; subjects 
were instructed to not get up if they woke up in the 
middle of the night and to get as much sleep as possi-
ble until lights-on. For those whose bedtime exceeded 
7 h, data from the first 7 h were used for analysis; for 
those whose bedtime was less than 7 h, all data were 
used for analysis. The unit was maintained at 25°C and 
50% relative humidity (RH). PSG recordings were made 
using Neurofax digital EEG system (EEG-1200, Nihon 
Kohden, Tokyo, Japan), which included an EEG with a 
conventional montage (F3, F4, C3, C4, O1, O2) based on 
the contralateral mastoid (M1, M2), an EOG at the outer 
canthus of each eye, a submental EMG, and an elec-
trocardiogram (ECG). Upon recording, the EEG, EOG, 

Table 5  Demographic data

Group A Group B Whole t/χ2 p

n 33 32 65

%male 60.6 65.6 63.1 0.026 0.871

Age (y) 10.5 ± 2.7 10.4 ± 2.6 10.4 ± 2.6 0.215 0.831

Height (cm) 143.2 ± 15.8 141.5 ± 15.6 142.4 ± 15.6 0.446 0.657

Weight (kg) 38.4 ± 11.7 37.1 ± 13.3 37.7 ± 12.4 0.415 0.679

BMI (kg/m2) 18.3 ± 2.7 17.9 ± 2.8 18.1 ± 2.7 0.602 0.55
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EMG, and ECG signals were digitized at 200 Hz; the sig-
nal was filtered using a high-pass filter with the follow-
ing time constants: EEG 0.3 s, EOG 0.03 s, submental 
EMG 0.03 s, and ECG 1.0 s. The signal was filtered using 
a low-pass filter as following: EEG 60 Hz, EOG 60 Hz, 
submental EMG 60 Hz, and ECG 60 Hz. The sleep stage 
(Stage N1, Stage N2, Stage N3, Stage R, or Stage W) was 
determined every 30 s according to the American Acad-
emy of Sleep Medicine (AASM) Manual for the scoring 
of sleep and associated events [37]. Four consecutively 
scored sleep stages (1 epoch = 30 s) were re-classified 
as either sleep (sleep epochs determined by PSG, SPSG) 
or wake (wake epochs determined by PSG, WPSG) every 
2 min; they corresponded with the activity intensity 
data measured by the FS-760 (1 epoch = 2 min). When 
four consecutive data contained two or more Stage W 
parameters, the dataset was classified as wake (WPSG) 
according to the definition adopted by previous stud-
ies [2–4, 38]. On the other hand, all other datasets were 
classified as sleep datasets (SPSG). Furthermore, SPSG was 
sub-classified as Stage R, Stage N1, Stage N2, or Stage 
N3, according to the most frequent sleep stage in the 
epoch (e.g., when SPSG contained three or more Stage N1 
data, it was classified as Stage N1). However, when SPSG 
contained two different stages, the priority order (Stage 
R → Stage N1 → Stage N2 → Stage N3) was used (e.g., 
when SPSG contained two stages N1 and R, it was classi-
fied as Stage R).

Activity recording with the FS‑760
Activity during the night was recorded using the waist-
worn FS-760 (ACOS CO., LTD, Nagano, Japan). This small, 
rectangular device had the same accelerometer as that 
in the FS-750, which was validated by Nakazaki et  al. for 
adults [4].

Briefly, the FS-760 is equipped with a three-axis acceler-
ometer, which count the number of times the acceleration 
exceeds a reference value every 0.125 s and sums it at 2-min 
intervals. From this record, 32 levels of activity intensity are 
calculated and stored.

Formulation of the algorithm for S/W scoring
To develop an algorithm for the FS-760 that determines the 
S/W states, a five-dimensional linear model was adopted 
according to previous studies [3, 4]. We hypothesized that 
this model utilizes activity intensity at an evaluation epoch 
as well as two epochs before and two epochs after (total of 
10 min). Using the activity intensity at 4 and 2 min before 
the evaluation epoch, at the evaluation epoch, and at 2 and 
4 min after the epoch (𝑥−2, 𝑥−1, 𝑥, 𝑥+1, 𝑥+2), each with a 
weighting coefficient (𝑎−2, 𝑎−1, 𝑎, 𝑎+1, 𝑎+2), the following 
equation gives composite variable z, which is the discrimi-
nant score:

The criteria for the linear discriminant equation were 
SPSG (= 0) and WPSG (= 1) obtained with PSG (1 epoch 
= 2 min). The coefficients for classifying the activity 
intensity obtained from the FS-760 into sleep (SACT​) and 
wakefulness (WACT​) according to the above formula were 
obtained by linear discriminant analysis using a data set 
containing activity intensity and PSG data from 33 sub-
jects in Group A. We adopt the split-sample method for 
this study [36].

Validity of the school‑aged children S/W scoring algorithm
Using the newly developed S/W scoring algorithm, the 
overall agreement rate, sensitivity, and specificity were 
calculated for the entire recording period as well as for 
each sleep stage (Stage N1, Stage N2, Stage N3, Stage 
R, or Stage W) for each participant in group B. These 
parameters indicated how sleep scores by PSG (SPSG, 
WPSG) closely match the estimates by activity intensity 
(SACT​, WACT​) for each corresponding epoch. Sensitivity 
was defined as the ratio of SACT​ to SPSG during the entire 
recording period. Specificity was defined as the ratio of 
WACT​ to WPSG during the entire recording period. The 
agreement rate for each sleep stage determined by PSG 
(Stage N1, Stage N2, Stage N3, Stage R, or Stage W) was 
defined as the percentage of activity intensity scores 
(SACT​ or WACT​) that closely match those calculated for 
each sleep stage. Similarly, the agreement rate in group A 
was calculated; it was considered whether there was any 
difference from the agreement rate in group B.

Optimization of the definition of sleep parameters
Sleep latency (SL), total sleep time (TST), wake after 
sleep onset (WASO), and sleep efficiency (SE) were cal-
culated using the S/W data obtained from the PSG and 
activity intensity data for each 2-min epoch [37].

The definitions of sleep parameters calculated from the 
PSG data are as follows: (1) SLPSG: the interval between 
the time of lights-off and the time of the first epoch when 
any of the sleep stages appeared (sleep-onset time); (2) 
TSTPSG: the total time period when sleep (SPSG) appeared 
from the time of sleep onset to the time of lights-on; 
(3) WASOPSG: time of (Time in bed (TIB) – (SLPSG + 
TSTPSG); and (4) SEPSG: the ratio of TSTPSG to TIB.

The definitions of sleep parameters calculated from 
the activity intensity data are as follows: (1) SLACT​: the 
interval between the time of lights-off and the time of the 
first SACT​ (sleep-onset time) among the sleep states that 
appeared continuously for more than n epochs for the 
first time after the time of lights-off, where n ranged from 
1 to 10 (2 to 20 min) and the SLACT​ was calculated for 
each occurrence; (2) WASOACT​: the total time of WACT​ 

z = a−2x−2 + a−1x−1 + ax + a+1x+1 + a+2x+2
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that appeared continuously for more than n epochs after 
(optimized) sleep onset, where n ranged from 1 to 10 (2 
to 20 min) and the WASOACT​ was calculated for each 
occurrence. When WACT​ appeared continuously for 
more than n epochs, the epochs were defined as WACT​; 
(3) TSTACT​: TIB from which SLACT​ and WASOACT​ were 
subtracted; and (4) SEACT​: the ratio of TST to TIB.

For the calculation of SLACT​ and WASOACT​, the values 
obtained from the criteria applied above to the values of 
SLPSG and WASOPSG were compared; the epoch numbers 
that would optimize the calculated results were sought. 
The optimization rules were to minimize the difference 
between the average parameter values obtained by PSG 
for the 65 participants and the average parameter values 
obtained from the S/W algorithm, such that the differ-
ence was not significant. The intraclass correlation coef-
ficient (ICC) was considered sufficient when the ICC was 
≥ 0.6 [17].

Accuracy of adult S/W algorithms in children
To confirm whether the accuracy of the existing algo-
rithm for FS760, which was established with adults, can 
be used for children, the algorithm of Nakazaki et al. [4] 
was adapted to the activity data of our subjects (65 chil-
dren). After adaptation, we calculated the agreement 
rate, sensitivity, and specificity of PSG S/W scoring for 
the entire recording period and each sleep stage (Stage 
W, Stage N1, Stage N2, Stage N3, and Stage R).

Differences in activity intensity between adults 
and children
As a background factor for using different algorithms 
for children and adults, we compared differences in the 
amount of activity during sleep between children and 
adults. Differences in activity intensity between adults 
and children according to sleep stage (Wake, NREM, and 
REM) were compared.

Searching for factors contributing to the accuracy 
of the adult S/W algorithm
To identify the factors associated with adult S/W scor-
ing agreement rates in the activity data, we used con-
currently recorded PSG and activity data from 17 
adults who participated in  the other studies as well as 
those from 65 children of this study. Of the 17 adults, 
one with an apnea hypopnea index (AHI) > 5 and 
another with periodic limb movement index (PLMI) 
> 15 were excluded; finally, 15 adults (14 males and 1 
female, mean age 26.8 ± 6.0 years, aged 20 to 39 years) 
were included in the analysis. Activity data of adults 
were acquired using FS-760 or compatible actigraph 
MTN-220 (ACOS CO., LTD) [39] and processed in the 
same way as for the children. The adult S/W scoring 

algorithm was applied to the activity data of 80 people; 
the agreement rate was then calculated. Multiple linear 
regression was conducted to reveal the factors associ-
ated with the agreement rates using the adult S/W scor-
ing algorithm with age, sleep efficiency, and the average 
activity of each 𝑥 when 𝑥 was Wake, NREM sleep, and 
REM sleep.

Statistics
Unpaired t-tests were used to compare the sensitiv-
ity, specificity, and agreement rates between groups A 
and B for both the entire recording period and each 
sleep stage. Paired t-tests and ICC were performed to 
compare sleep parameters determined from PSG and 
activity intensity data obtained before and after the 
application of the optimization rules. Two-way analysis 
of variance with group (adult/ children)✕ epoch (𝑥−2, 
𝑥−1, 𝑥, 𝑥+1, 𝑥+2) was used for the comparison of differ-
ences in activity intensity between adults and children. 
Multiple linear regression analysis was performed using 
the forced entry method. All data are expressed as the 
mean ± SD. All statistical analyses were performed 
using R (version 3.6.1; R Foundation) and IBM SPSS 
Statistics (version 26.0; IBM). Statistical significance 
was set at P < 0.05.
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